Abstract
We model the evolution of protoplanetary disks surrounding millisecond pulsars, using PSR 1257+12 as a test case. Initial conditions were chosen to correspond to initial angular momenta expected for supernova-fallback disks and disks formed from the tidal disruption of a companion star. Models were run under two models for the viscous evolution of disks: fully viscous and layered accretion disk models. Supernova-fallback disks result in a distribution of solids confined to within 1-2 AU and produce the requisite material to form the three known planets surrounding PSR 1257+12. Tidal disruption disks tend to slightly underproduce solids interior to 1 AU, required for forming the pulsar planets, while overproducing the amount of solids where no body, lunar mass or greater, exists. Disks evolving under 'layered' accretion spread somewhat less and deposit a higher column density of solids into the disk. In all cases, circumpulsar gas dissipates on $\lesssim 10^{5}$ year timescales, making formation of gas giant planets highly unlikely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.