Abstract
Fracture permeabilities are shown surprisingly sensitive to mineral dissolution at modest temperatures (c. 20°–80°C) and flow rates. Net dissolution may either increase or decrease permeability, depending on the prevailing ambient THMC conditions. These behaviours have important ramifications for constitutive laws for flow and transport. Flow-through tests are completed on a natural fracture in novaculite at temperatures of 20°C, 80°C, 120°C, and 150°C, and on an artificial fracture in limestone at 20°C. Measurements of fluid and dissolved mass fluxes, concurrent X-ray CT and imaging, and post-test sectioning and SEM are used to constrain the progress of mineral dissolution and its effect on transport properties. For the novaculite, under constant effective stress, fracture permeability decreased monotonically with an increase in temperature, with fracture permeability reducing by two-orders-of-magnitude over the 900 h test. For the limestone, an initial decrease in permeability over the first 935h of the test, switched to a net increase in permeability as distilled water was subsequently circulated for the final 500h of the test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.