Abstract

If the transmission occurs through local contact of the individuals in a spatially structured population, the evolutionarily stable (ESS) traits of parasite might be quite different from what the classical theory with complete mixing predicts. In this paper, we theoretically study the ESS virulence and transmission rate of a parasite in a lattice-structured host population, in which the host can send progeny only to its neighboring vacant site, and the transmission occurs only in between the infected and the susceptible in the nearest-neighbor sites. Infected host is assumed to be infertile. The analysis based on the pair approximation and the Monte Carlo simulation reveal that the ESS transmission rate and virulence in a lattice-structured population are greatly reduced from those in completely mixing population. Unlike completely mixing populations, the spread of parasite can drive the host to extinction, because the local density of the susceptible next to the infected can remain high even when the global density of host becomes very low. This demographic viscosity and group selection between self-organized spatial clusters of host individuals then leads to an intermediate ESS transmission rate even if there is no tradeoff between transmission rate and virulence. The ESS transmission rate is below the region of parasite-driven extinction by a finite amount for moderately large reproductive rate of host; whereas, the evolution of transmission rate leads to the fade out of parasite for small reproductive rate, and the extinction of host for very large reproductive rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call