Abstract

Tuning the ratio of sp2/sp3 is crucial factor for obtaining high aspect ratio of graphene oxide. In this work, we reported a comprehensive study on synthesis of GO with different sp2/sp3 ratios at different oxidation reaction temperatures. The physicochemical properties of the as-prepared GO were characterized by Attenuated total reflectance infrared spectroscopy (ATR-IR), Raman spectroscopy, Solid-state nuclear magnetic resonance (SSNMR), Field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Transmission electron microscope (TEM), hydrophilicity test and zeta potential. Interestingly, GO-35 showed the smallest contact angle with carbon-to-oxygen (O/C) ratio 0.469. ATR-IR reveals the different intensity of hydroxyl (−OH), carbonyl (−CO), epoxy (C–O–C), as well as carboxyl (−COOH) moieties in the GO samples, and their intermolecular interactions significantly affected the interlayer spacing between consecutive identical planes of carbon atoms which examined using XRD. XPS confirmed that the basal species such as –OH is abundantly available in the GO-35 and unavailable in GO-50. Our results demonstrate that the properties of GO can be tuned using different oxidation reaction temperatures, which significantly influences types of oxygen-functional groups generated at different oxidation levels, thus could pave the way for various applications of graphene-based material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call