Abstract

The widespread development of microbialites in shallow areas of the Tethys Ocean at the start of the Early Triassic reflects the deterioration of marine ecosystems in the aftermath of the extinction that marked the demise of the majority of Palaeozoic marine faunas. Here we present a study of the evolving microbialite forms and associated biotic assemblages of this pioneering microbialite interval from exposures at Chongyang, Hubei Province, China. This research provides a perspective on the effects of eustatic transgression on marine ecosystems as water depths increased at the beginning of Mesozoic, through the study of the changing forms, microfacies and distribution of microbialites. Microbialite forms evolved from stratiform stromatolites to a sequence of tabular thrombolites (with an intercalated layer of columnar stromatolites), followed by domical thrombolites that were overlain, in turn, by oolites. The stratiform stromatolites contain poorly preserved remains of calcified cyanobacteria, but microfossils with chambered structure can also be seen. Metazoan fossils increased from the base of the overlying tabular thrombolite, reflecting increasing biodiversity with deepening of seawater. The occurrence of columnar stromatolites within the tabular thrombolite may indicate a temporary sea-level shallowing. Foraminiferans and other metazoans are absent within the columnar stromatolites, but spherical cyanobacterial remains are extremely abundant. Well-preserved calcified cyanobacteria may reflect an absence of metazoan predation and/or carbonate supersaturation of seawater. As water deepened, domical thrombolites developed and the more complex seafloor relief created varied niches between and within the domes that harboured more ecologically diverse communities. During the process of transgression within the microbialite interval, carbon isotopes exhibit a negative relationship with biodiversity, implying that upwelling of anoxic deep-ocean water, if associated with the negative excursion of carbon isotope values, did not inhibit the diversification of benthic organisms at least on shallow carbonate platforms in the period immediately after the end-Permian mass extinction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call