Abstract

The evolution of linear viscoelasticity during the vulcanization of polyethylene is studied through the gel point. The material in the vicinity of the gel point is described by two scaling laws: one characterizes the viscoelasticity at the critical point and a second characterizes the evolution of viscoelasticity near the gel point. Time Resolved Mechanical Spectroscopy is used to observe both scaling phenomena. The material at the gel point displays power law relaxation over five decades of time with a power-law relaxation exponent equal to 0.32. This study conforms with previous findings that this exponent is composition-dependent. The longest relaxation time diverges in the vicinity of the gel point as λmax ∼ |pc - p| −1/κ, and we find κ = 0.2. This result conforms with previous reports that this exponent may be independent of composition. The Arrhenius flow activation energy for this material undergoes three-fold changes during crosslinking up to the gel point. A single-adjustable-parameter stretched-exponential-power law relaxation function is an inadequate representation of crosslinked materials over any significant range of extent of the reaction up to the gel point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call