Abstract
We consider the evolution of the stable and unstable manifolds of an equilibrium point of a Hamiltonian system of two degrees of freedom which depends on a parameter, ν. The eigenvalues of the linearized system are complex for ν<0 and pure imaginary for ν>0. Thus, for ν<0 the equilibrium has a two-dimensional stable manifold and a two-dimensional unstable manifold, but for ν>0 these stable and unstable manifolds are gone. If the sign of a certain term in the normal form is positive then for small negative ν the stable and unstable manifolds of the system are either identical or must have transverse intersection. Thus, either the system is totally degenerate or the system admits a suspended Smale horseshoe as an invariant set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.