Abstract

Triple junctions (TJs) are line defects in three-dimensional (3D) polycrystalline materials where three grains meet. Transport along the TJs depends on the connectivity between them. Here, we investigate the connectivity of more than 6000 TJs in a 3D microstructure of pure iron (Fe) through the lens of bond percolation. Our efforts are made possible by synchrotron-based x-ray diffraction tomography, which allows us to resolve the TJ network both temporally and spatially, during grain growth. In the framework of standard percolation theory, we determine a percolation threshold of the TJs, above which there exists a continuous pathway of TJs that travels infinitely far. Our experimental results indicate a surprisingly different percolation threshold (by 16%) compared to models and theories. The reason for the discrepancy is that the real TJ network has a topological disorder that is not present in the idealized microstructures considered in prevailing models and theories. Leveraging the wealth of time-resolved data we trace the origin of this disorder by following the topological transitions that accompany grain growth. Overall, the insights obtained in this study can help guide the design of polycrystalline materials via defect engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call