Abstract
The hummock–depression micro‐topography characteristics of the alpine marshy wetland in Sanjiangyuan are indicative of wetland degradation and the process by which healthy wetlands are transformed into flat grasslands. The aim of the present study was to examine changes in plant community structure and soil characteristics in a hummock–depression micro‐topography along a degradation gradient. We observed that: (a) the height and cover of dominant hydrophytes decreased gradually with an increase in degradation severity, leading to replacement by xerophytes; (b) with the transition from healthy to degraded wetlands, hummocks became sparser, shorter, and broader and became merged with nearby depressions; water reserves in the depressions shifted from perennial to seasonal, until they dried out completely; and (c) soil moisture content, porosity, hardness, and organic matter gradually decreased by 30.61%, 19.06%, 37.04%, and 73.27%, respectively, in hummocks and by 33.25%, 8.19%, 47.72%, and 76.79%, respectively, in depressions. Soil bulk density, soil electrical conductivity, and soil dry weight increased by 31%, 83.33%, and 105.44%, respectively, in hummocks, but by only 11.93%, 7.14%, and 97.72%, respectively, in depressions. The results show that hummock soils in healthy wetlands have strong water absorption properties, through which plant roots can penetrate easily. Wetland degradation reduces the water absorption capacity of hummock soil and soil saturation capacity of depressions, thus enhancing soil erosion potential and susceptibility to external factors. Soil moisture is a key environmental factor influencing wetland degradation, and grazing accelerates the process. Based on the changes observed in hummock morphology, vegetation, and soil properties along a degradation gradient, a conceptual model is proposed to illustrate the process of gradual degradation of marshy wetlands from healthy to transitional wetlands and finally to a degenerated state. Thus, our research provides insights into the degradation process of the alpine marshy wetland ecosystem in Sanjiangyuan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.