Abstract

The evolution of Typhoon Mujigae (2015) during the landfall period is determined using potential vorticity (PV) based on a high-resolution numerical simulation. Diabatic heating from deep moist convections in the eyewall produces a hollow PV tower extending from the lower troposphere to the middle levels. Since the potential temperature and wind fields could be highly asymmetric during landfall, the fields are divided into symmetric and asymmetric components. Thus, PV is split into three parts: symmetric PV, first-order asymmetric PV, and quadratic-order asymmetric PV. By calculating the azimuth mean, the first-order term disappears. The symmetric PV is at least one order of magnitude larger than the azimuthal mean quadratic-order term, nearly accounting for the mean cyclone. Furthermore, the symmetric PV tendency equation is derived in cylindrical coordinates. The budget terms include the symmetric heating term, flux divergence of symmetric PV advection due to symmetric flow, flux divergence of partial first-order PV advection due to asymmetric flow, and the conversion term between the symmetric PV and quadratic-order asymmetric term. The diagnostic results indicate that the symmetric heating term is responsible for the hollow PV tower generation and maintenance. The symmetric flux divergence largely offsets the symmetric heating contribution, resulting in a horizontal narrow ring and vertical extension structure. The conversion term contribution is comparable to the mean term contributions, while the contribution of the partial first-order PV asymmetric flux divergence is apparently smaller. The conversion term implicitly contains the combined effects of processes that result in asymmetric structures. This term tends to counteract the contribution of symmetric terms before landfall and favor horizontal PV mixing after landfall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call