Abstract

In order to facilitate the study of the evolution of female flightlessness among the geometrid subfamily Ennominae (Lepidoptera, Geometridae), we carried out a phylogenetic analysis based on a morphological data matrix, and DNA sequences. We used seven nuclear gene fragments, elongation factor 1α (EF-1α), wingless (wgl), isocitrate dehydrogenase (IDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S5 (RpS5) and segments D1 and D2 of the 28S rRNA gene, and one mitochondrial gene fragment, cytochrome oxidase subunit I (COI). Sampling included 55 species of Ennominae covering all tribes with flightless females of the Holarctic boreal zone, and some other geometrids used as outgroups. Our results clearly confirmed that Ennominae (including Alsophila of the traditional subfamily Alsophilinae) is a monophyletic group, as well as supported the previously established morphology-based division of Ennominae into “ennomine” and “boarmiine” groups of genera. A number of taxonomic ambiguities were resolved but the monophyly of the traditionally recognised tribe Bistonini, comprising a number of flightless species, remained ambiguous. Bistonini is thus suggested to be subsumed to the tribe Boarmiini in the broad sense. Indeed, an analysis of timing of divergence suggested that Boarmiini s. lat. rapidly diversified in the late Oligocene/early Miocene. Within the Ennominae, seven independent origins of female flightlessness were revealed facilitating phylogenetic comparative analyses to be performed in search of causes and consequences of this phenomenon. The present phylogenetic hypothesis supports the conclusions of the “adaptive story”, a hypothesis of the sequence of evolutionary events leading to flightlessness, we have presented earlier ( Snäll et al., 2007). In particular, in the “boarmiine” group, the tribe Boarmiini s. lat. clearly represents a group of geometrids in which female flightlessness has evolved more frequently than in any other tribes, suggesting that this clade has likely been predisposed to evolutionary events leading to the manifestation of female flightlessness. The ancestor of the wing-reduced Ennominae has likely been a winged but slow flying forest moth feeding polyphagously on deciduous trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.