Abstract

It is well known that triaxial deformation is a common feature of continental tectonics, and is accommodated by complex polymodal fault networks. Field investigations confirm that multiple phases involving time-dependent three-dimensional strain conditions (e.g. constriction, plane, and flattening strain) affect the spatial and temporal interaction of polymodal fault systems. However, a key question remains: How do changing strain conditions affect the reactivation of fault systems that formed during a previous deformation phase? Here, we conduct scaled analogue models with time-dependent boundary conditions to investigate how fault networks evolve under changing boundary conditions, including  reactivation and formation of new faults. We have developed a setup in which a basal rubber sheet is stretched in one direction, so that longitudinal extension and layer thinning are accompanied by lateral shortening, hence producing triaxial deformation (Liu et al. in revision). According to previous brittle-viscous experiments with this set-up, an increase in longitudinal extension velocity results in a higher coupling between the rubber base and brittle layer, generating increasing transmission of lateral shortening from the base into the brittle layer. We thus induce constriction-to-plane strain conditions in the brittle layer as a function of longitudinal extension velocity by varying the magnitude of lateral contraction. In a new set of experiments, by varying extension velocity either stepwise or continuously, we realize time-dependent kinematic boundary conditions including deformation phases and secular changes, respectively. Digital image correlation (DIC) and photogrammetry (structure from motion, SFM) are employed to track the 3D kinematic surface and topography evolution, respectively. Preliminary observations show both the formation of new faults and the reactivation of early phase faults through a change from plane to constriction strain. Conversely, a change from constriction to plane strain conditions results in the abandonment of the early phase fault network as it becomes overprinted by fault systems of the subsequent phase. Moreover, early-phase fault systems influence the propagation and linkage of fault populations in subsequent phases. Our analogue models highlight the impact of strain conditions on the overall plan-view geometry of fault populations, providing alternative explanations for complex fault patterns and interactions (e.g. the Jeanne d’Arc basin, the North Træna Basin, and the Beagle Platform).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call