Abstract
On the basis of the comparative approach and three models of metabolism (endothermic and ectothermic vertebrates, body mass, and mammalian development), we suggest that a few common cellular processes, linked either directly or indirectly to membranes, consume the majority of energy used by most organisms; that membranes act as pacemakers of metabolism through changes in lipid composition, altering membrane characteristics and the working environment of membrane proteins--specifically, that changes in the membrane environment similarly affect the molecular activities (specific rates of activity) of membrane-bound proteins; and that polyunsaturation of membranes increases whereas monounsaturation decreases the activity of membrane proteins. Experiments designed to test this theory using the sodium pump support this supposition. Potential mechanisms considered include fluidity, electrical fields, and related surface area requirements of lipids. In considering the evolution of endothermy in mammals, for example, if the first mammals were small, possibly nocturnal and active organisms, all these factors would favour increased polyunsaturation of membranes. Such changes (from monounsaturated to polyunsaturated membranes) would allow membranes to set the pace of metabolism in the evolution of endothermy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.