Abstract

We present a catalog of 99 candidate clusters and groups of galaxies in the redshift range 0.1 1.5). Using the 3.6 μm LF as a proxy for stellar luminosity, we remove this component from the MIR (5.8 and 8.0 μm ) cluster LFs and measure the LF of dusty star formation/AGNs in clusters. We find that at z 0.4, an additional population of dusty starburst galaxies is required to properly model the 8.0 μm LFs. Comparison to field studies at similar redshifts shows a strong differential evolution in the field and cluster 8.0 μm LFs with redshift. At z ~ 0.65 8.0 μm -detected galaxies are more abundant in clusters compared to the field, but thereafter the number of 8.0 μm sources in clusters declines with decreasing redshift, and by z ~ 0.15, clusters are underdense relative to the field by a factor of ~5. The rapid differential evolution between the cluster and field LFs is qualitatively consistent with recent field galaxy studies that show that the star formation rates of galaxies in high-density environments are larger than those in low-density environments at higher redshift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.