Abstract

BackgroundDrugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. In non-mammalian species, only one xenosensor gene has been found. Using chicken as a model organism, the aim of our study was to elucidate whether non-mammalian species only have one or two xenosensors like mammals.ResultsTo explore the evolutionary aspect of this divergence, we tried to identify additional xenobiotic sensing nuclear receptors in chicken using various experimental approaches. However, none of those revealed novel candidates. Ablation of chicken xenobiotic receptor (CXR) function by RNAi or dominant-negative alleles drastically reduced drug-induction in a chicken hepatoma cell line. Subsequently, we functionally and structurally characterized CXR and compared our results to PXR and CAR. Despite the high similarity in their amino acid sequence, PXR and CAR have very distinct modes of activation. Some aspects of CXR function, e.g. direct ligand activation and high promiscuity are very reminiscent of PXR. On the other hand, cellular localization studies revealed common characteristics of CXR and CAR in terms of cytoplasmic-nuclear distribution. Finally, CXR has unique properties regarding its regulation in comparison to PXR and CAR.ConclusionOur finding thus strongly suggest that CXR constitutes an ancestral gene which has evolved into PXR and CAR in mammals. Future studies should elucidate the reason for this divergence in mammalian versus non-mammalian species.

Highlights

  • Drugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals

  • The African clawed frog Xenopus laevis has two nuclear receptors, benzoate X receptor α and β (BXRα/β, NR1I2), that are related to the xenobiotic-sensing nuclear receptors, the BXRs are pharmacologically distinct from PXR and CAR and do not respond to xenobiotics [15,20]

  • Apart from one intron which is found in the variable region 5' of the DNA-binding domain, all other seven introns are located in the same position on the corresponding genes, even in the ligand-binding domains that in the case of CAR and PXR are unusually divergent for nuclear receptor orthologs [22]

Read more

Summary

Introduction

Drugs and other xenobiotics alter gene expression of cytochromes P450 (CYP) by activating the pregnane X receptor (PXR) and constitutive androstane receptor (CAR) in mammals. A subset of these CYPs can be activated or inhibited in the liver by a variety of xenobiotic and endobiotic compounds. Transcriptional activation of these CYPs is part of an adaptive response to exposure to drugs and other xenobiotics and has major clinical and toxicological implications. The pregnane X receptor (PXR, official nomenclature NR1I2) and the constitutive androstane receptor (CAR, NR1I3), both belonging to the gene superfamily of nuclear receptors, have been identified to be involved in hepatic drug-induction [8,9,10,11,12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.