Abstract

Diapause of part of a population during a breeding opportunity is widespread among insects. We explore the evolution of such diapause in a coupled host–parasitoid system, using a discrete-generation population dynamic model that incorporates diapause. We show that diapause in the host tends to be a stabilizing factor while diapause in the parasitoid does not affect the stability boundaries. We then allow the frequency of diapause in the host and parasitoid to evolve, and find the joint population and evolutionary dynamic equilibrium by numerical methods. At the equilibrium, population dynamics exhibit cycles and host diapause always occurs. Parasitoid diapause often occurs, though this depends on exact parameter values. Thus,intrinsicallygenerated fluctuations in fitness (due to cyclical population dynamics) lead to the evolution of diapause as a bet-hedging mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.