Abstract

This paper surveys the evolution of computational methods in aerodynamics. Improvements in high-speed electronic computers have made it feasible to attempt numerical calculations of progressively more complex mathematical models of aerodynamic flows. Numerical approximation methods for a hierarchy of models are examined in ascending order of complexity, ranging from the linearized potential flow equation to the Reynolds averaged Navier Stokes equations, with the inclusion of some previously unpublished material on implicit and multigrid methods for the Euler equations. It is concluded that the solution to the Euler equations for inviscid flow past a complete aircraft is a presently attainable objective, while the solution to the Reynolds averaged Navier Stokes equations is a possibility clearly visible on the horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.