Abstract

The evolution of C and O abundances in the Milky Way can impose strong constraints on stellar nucleosynthesis and help understanding the formation and evolution of our Galaxy. The aim is to review the measured C and O abundances in the disk and bulge of the Galaxy and compare them with model predictions. We adopt two successful chemical evolution models for the bulge and the disk, which assume the same nucleosynthesis prescriptions but different histories of star formation. The data show a clear distinction between the trend of [C/O] in the thick and thin Galactic disks, while the thick disk and bulge trends are indistinguishable with a large (>0.5 dex) increase in the C/O ratio in the range from -0.1 to +0.4 dex for [O/H]. In our models we consider yields from massive stars with and without the inclusion of metallicity-dependent stellar winds. The observed increase in the [C/O] ratio with metallicity in the bulge and thick disk lies between the predictions utilizing the mass-loss rates of Maeder (1992) and those of Meynet & Maeder (2002). A model without metallicity-dependent yields completely fails to match the observations. Thus, the relative increase in carbon abundance at high metallicity appears to be due to metallicity-dependent stellar winds in massive stars. These results also explain the steep decline of the [O/Fe] ratio with [Fe/H] in the Galactic bulge, while the [Mg/Fe] ratio is enhanced at all [Fe/H]. (abridged)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.