Abstract

The difficulty of quantifying asymmetrical limb movements, compared with symmetrical gaits, has resulted in a dearth of information concerning the mechanics and adaptive benefits of these locomotor patterns. Further, no study has explored the evolutionary history of asymmetrical gaits using phylogenetic comparative techniques. Most foundational work suggests that symmetrical gaits are an ancestral feature and asymmetrical gaits are a more derived feature of mammals, some crocodilians, some turtles, anurans and some fish species. In this study, we searched the literature for evidence of the use of asymmetrical gaits across extant gnathostomes, and from this sample (n=308 species) modeled the evolution of asymmetrical gaits assuming four different scenarios. Our analysis shows strongest support for an evolutionary model where asymmetrical gaits are ancestral for gnathostomes during benthic walking and could be both lost and gained during subsequent gnathostome evolution. We were unable to reconstruct the presence/absence of asymmetrical gaits at the tetrapod, amniote, turtle and crocodilian nodes with certainty. The ability to adopt asymmetrical gaits was likely ancestral for Mammalia but was probably not ancestral for Amphibia and Lepidosauria. The absence of asymmetrical gaits in certain lineages may be attributable to neuromuscular and/or anatomical constraints and/or generally slow movement not associated with these gaits. This finding adds to the growing body of work showing the early gnathostomes and tetrapods may have used a diversity of gaits, including asymmetrical patterns of limb cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call