Abstract

Aims. We investigate the properties of an intra-cluster stellar population (ICSP) and an intra-group stellar population (IGSP) as a function of time. We apply different criteria to separate between the stellar components residing in the galaxies and in the intergalactic spaces. In addition we investigate the rate of SNIa events in the ICSP/IGSP and the amount of 56 Fe produced by these events. Finally we compare the dynamics of the ICSP/IGSP with the stellar component residing in the galaxies. Methods. By applying a combined N-body/hydrodynamic description (GADGET-2) with radiative cooling and a recipe for star formation and stellar feedback two different sized systems were calculated, i.e. galaxy cluster and galaxy groups. From these simulations extended halo catalogues were extracted with AHF: Amiga’s Halo Finder. Together with the full information of all particles in the simulation several separation criteria between the ICSP/IGSP and the stellar component in the galaxies were investigated in detail. Results. Applying different criteria to distinguish the stellar components inside and outside clusters/groups reveals different amounts of stellar mass present in the ICSP. We find that 7% to 40% of all stars belong to the ICSP in the galaxy cluster simulation depending on the applied separation criteria at redshift z = 0. The same separation criteria applied on a group simulation results in a 3% to 30% IGSP component compared to the total stellar mass in the system at redshift z = 0. Our investigation reveals a major difference between the gradient in the evolution of the ICSP and IGSP; the stellar mass present in the ICSP is increasing, whereas the fraction of stellar mass in the IGSP is decreasing in the same redshift regime. Applying simple SNIa rate estimates yields SNIa rates for the ICSP/IGSP of the order of 0.05 SNIa events per year in the ICSP and one order of magnitude lower for the IGSP, reflecting the different stellar masses in the ICSP/IGSP. The amount of 56 Fe-mass produced by the ICSP/IGSP SNIa is nearly two orders of magnitudes lower than observed values. The mean age of the stellar component populating the ICSP/IGSP is younger than the mean age of the stellar component in the galaxies. The maximum in the velocity distribution of the ICSP is shifted to lower velocities compared to the maximum in the velocity distribution of the stellar component in the galaxy cluster simulation. This reflects the high galaxy interaction rate present in the galaxy clusters. The difference gives us a measure for the dynamical state of the galaxy cluster/group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.