Abstract

The strength of mate choice (choosiness) often varies with age, but theory to understand this variation is scarce. Additionally, theory has investigated the evolution of choosiness in speciation scenarios but has ignored that most organisms have overlapping generations. We investigate whether speciation can result in variation of choosiness with age, and whether such variation can in turn affect speciation. We develop a population-genetic model of the evolution of choosiness in organisms with overlapping generations in the context of secondary contact between two divergent populations. We assume that females choose males that match their phenotype, such that choosiness evolves by sexual selection. We demonstrate that speciation can result in the evolution of age-specific choosiness when the mating trait is under divergent ecological selection and age is not used as a mating cue. The cause of this result is that allele frequencies differ between choosy females and males. However, we find that the evolution of age-specific choosiness does not affect the overall level of reproductive isolation compared to a case without age-structure, supporting previous speciation theory. Overall, our results connect life history and speciation theory, and the mechanisms that we highlight have implications for the understanding of the role of sex-specific selection in the evolution ofchoosiness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call