Abstract

Abstract The development of an individual quasi-geostrophic disturbance in a three-dimensional baroclinic atmosphere is investigated by using a wave-packet representation and the WKB method. The results obtained indicate that the development of a Rossby-wave packet in the upper level of the atmosphere depends on the packet's structure and location with respect to the zonal flow, whether the zonal flow is stable or not. The wave packet develops (decays) if the three-dimensional rays are indirect up-gradient (down-gradient) in the zonal flow. All characteristics of the wave packet are changing with time. The spatial scale or the three-dimensional wavelength of the developing (decaying) wave packet increases (decreases). The tilt of barotropic decaying (developing) trough line away from the meridian increases (decreases), while the vertical tilt of the baroclinic decaying (developing) trough line increases (decreases). The maximum amplitude of the developing (decaying) Rossby-wave packet moves toward (out fr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.