Abstract

PREMISEWith over 1500 species, the globally distributed Vernonieae is one of the most successful members of the largest family of flowering plants, the Compositae. However, due to its morphological complexity and limited geographic representation in previous studies, subtribal and biogeographic relationships are unclear. Here, new DNA sequence data spanning the geographic range of the tribe provides a taxonomically robust time‐calibrated phylogeny, estimates migration pathways and timing of important biogeographic events, and allows inference of environmental factors that have contributed to the success of the Vernonieae worldwide.METHODSPhylogenetic relationships were estimated for 368 taxa representing all Vernonieae subtribes. Molecular clock and ancestral range estimation analyses provide a framework for inference of the biogeographic history of the tribe.RESULTSRelationships among the subtribes were established and correct placement determined for problematic taxa, along with the first model‐based assessment of the biogeographic history of the tribe. The Vernonieae were estimated to have evolved ~50 mya. Africa was the first center of diversity, from which a single dispersal event established the monophyletic New World lineage. Long‐distance dispersal from Africa and Brazil established the tribe on five continents and Oceania.CONCLUSIONSThe New World lineage is monophyletic, but Old World taxa are not. New subtribal taxonomies are needed. Moquinieae are nested in Vernonieae. Long‐distance dispersal from Africa beginning 45 mya was key to establishing the tribe’s near‐global distribution. Migration corridors created by volcanic mountain chains and iron‐rich soils in Africa and the Americas promoted radiation and range expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call