Abstract

A comprehensive interdisciplinary study is performed for 12 polymers promising for the fabrication of membranes for extracorporeal membrane oxygenation based on them by methods of gas permeability, wetting, piezoelectric microweighing, and direct biomedical methods for determining hemocompatibility of whole blood from healthy donors. It is found that trimethylsilyl-substituted polytricyclononene, polyhexafluoropropylene, and semicrystalline polyphenylene oxide are the best polymer materials for the diffusion membranes of oxygenators. It is shown that traditional approaches that associate the surface properties of polymers (water wettability, plasma protein adsorption, energy characteristics of surfaces) with their hemocompatibility do not provide precise correlations with the biomedical methods based on the analysis of the changes in the shape of blood cells as a result of adhesion on the surface of the polymer. The complexity of the mechanism of interaction of the surface of polymers with blood also does not allow for clear structure–property correlations traditional for membrane gas separation. The directions of further research in this area are defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.