Abstract
Introduction Gonorrhea has become an emerging sexually transmitted infection worldwide. The multi-antibiotic resistance facilitates the transmission; thus, new antibiotics or alternatives are needed. Antimicrobial peptides (AMP) are antimicrobials naturally secreted by the host as a defense material. Teleost-derived AMP have gained attention over the past two decades due to their potent efficacy towardmicroorganisms. This study examines teleost-derived AMP againstNeisseria gonorrhoeae (GC), the responsible bacteria for gonorrhea, to evaluate the antibiotic potential as a future alternative for preventing gonorrhea. Methods Minimal inhibitory concentration (MIC) and time-killed assay were conducted to evaluate the inhibition concentration of each AMP. Transmission electron microscopy was used to confirm the potential mode of action. The inhibition of microcolony formation and adherence to epithelial cells were examined to assess the infection inhibition. Results Pardaxin-based (flatfish pardaxin {PB2}) andpiscidin-based (striped bass piscidin 1 {PIS} and tilapia piscidin {TP} 4) AMP were effective towardGC under or equal to 7.5 μg/mL as of minimal inhibitory concentration. Transmission electron microscopy images revealed that these AMP attack bacterial membranes as membrane blebbing and breakage were observed. These AMP also effectively reduced the GC biofilm formation, as well as their adherence to human endocervical epithelial cells. Conclusion Pardaxin-based (PB2) andpiscidin-based (PIS and TP4) teleost-derived AMP can inhibit GC and potentially serve as the new antibiotic alternative for preventing GC colonization and infection. This study will shed some light on the future development of teleost-derived AMP in treating gonorrhea and maintaining reproductive health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.