Abstract

Abdominal aortic aneurysm (AAA) is a dangerous and lethal vascular disease. Non-invasive two-dimensional speckle-tracking imaging (2D STI) plays an important role in assessing aortic biomechanical properties. Our study aimed to evaluate the alterations of biomechanical characteristics using 2D STI in 91 AAA patients with different size. Aneurysm strain, elastic modulus, stiffness index β, and aortic distensibility determined by M-Mode ultrasound (US), and longitudinal strain (LS) derived from 2D STI were compared in 40 large AAA patients (diameter ≥ 55 mm) and 51 small AAA patients (diameter < 55 mm). Compared with small AAA group, anterior wall longitudinal strain (ALS) and posterior wall longitudinal strain (PLS) were significantly decreased in large AAA group (all P < .05) and not affected by age, symptom, hypertension, and thrombus. Meanwhile, ALS and PLS correlated negatively with maximal aneurysm diameters (r=-0.628 and -0.469, respectively, all P < .001). And only ALS was associated with M-Mode US parameters (all P < .05). Based on receiver operating characteristic (ROC) analysis, ALS and PLS had strong diagnostic values for large AAA with the area under the curve (AUC) of 0.82 and 0.72, and cut-off points of 1.71 and 1.64% with a sensitivity of 78 and 72%, and a specificity of 75 and 70%, respectively. LS measured by 2D STI could evaluate the biomechanical properties of aneurysm wall with different size, and add additional diagnostic value in distinguishing between small and large AAA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call