Abstract

A compound option (the mother option) gives the holder the right, but not obligation to buy (long) or sell (short) the underlying option (the daughter option). In this paper, we demonstrate a partial differential equation (PDE) approach to pricing American-type compound options where the underlying dynamics follow Heston’s stochastic volatility model. This price is formulated as the solution to a two-pass free boundary PDE problem. A modified sparse grid approach is implemented to solve the PDEs, which is shown to be accurate and efficient compared with the results from Monte Carlo simulation combined with the Method of Lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.