Abstract

Responding to plans of the European Commission for extending the observation capabilities of the Copernicus programme, the European Space Agency (ESA) has initiated Phase A industrial (technical feasibility) studies for several new space-borne Earth Observation missions. High priority is given to a constellation of LEO satellites in Sunsynchronous orbit with the purpose of observing anthropogenic carbon dioxide (CO<sub>2</sub>) emissions [European Commission, 2017]. The observing system shall acquire images of CO<sub>2</sub> concentration in terms of dry air column-averaged mole fractions (XCO<sub>2</sub>), providing complete global land coverage at high spatial resolution (4 km<sup>2</sup>) within five days. The demanding requirements call for a payload comprising a combination of multiple instruments, which perform simultaneous measurements. The XCO2 is inferred from reflectance measurements in the Near-Infrared (NIR) and Short-Wave Infrared spectral regions (SWIR). This requires at least three spatially co-registered push-broom imaging spectrometers, measuring spectral radiance and solar irradiance in the NIR (747-773 nm), SWIR-1 (1595-1675 nm) and SWIR-2 (1990-2095 nm) at moderate spectral resolving power (R~5000-7000). In addition, the observations for CO<sub>2</sub> concentration will be complemented by Differential Optical Absorption Spectroscopy (DOAS) measurements of nitrogen dioxide (NO<sub>2</sub>) over the same area. The NO<sub>2</sub> measurements in the visible region (400-500 nm) are expected to serve as a tracer for plumes of high CO<sub>2</sub> concentration resulting from high temperature combustion, which will facilitate plume identification and mapping. The third component of the payload is a multiple-angle polarimeter (MAP), performing high-precision measurements of aerosol (and cloud) properties. Its measurements of polarized radiance under various observation angles are expected to reduce XCO<sub>2</sub> bias error and significantly increase the yield of useful retrievals from the NIR and SWIR spectra. The complex observation architecture, involving multiple instruments and platforms, call for optimized observational requirements, driven by the primary goal of detecting and quantifying point-sources of greenhouse gas emissions. In particular, high single-sounding precision is essential for identifying plumes of elevated CO<sub>2</sub> concentration from instantaneous image acquisitions without regional and temporal averaging. This translates into stringent requirements for Signal-to-noise ratio (SNR), as well as spatial co-registration and spectral stability, which drive the instrument design. The presentation will introduce the different elements of the candidate Copernicus mission, in view of the ambitious mission goals. The payload components and observation requirements are addressed with special emphasis on the derivation of the SNR and spectral resolution requirements, which determine the instrument sizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.