Abstract
During the past years, monolithic integration in InP has been the driving force for the realization of integrated photonic routing systems. The advent of silicon as a basis for cost-effective integration and its potential blend with III-V material is now opening exciting opportunities for the development of new, high-performance switching and routing equipment. Following this rationale, BOOM-as a European research initiative-aims to develop compact, cost-effective, and power-efficient silicon photonic components to enable optical Tb/s routers for current and new generation broadband core networks. This “siliconization” of photonic routers is expected to enable ultrahigh bit rates as well as higher levels of integration and power efficiency. The BOOM “device portfolio” includes all-optical wavelength converters, ultradense wave-division multiplexing (UDWDM) photodetectors, and high-speed transmitters; all based on silicon waveguide substrates. Here, we present the device concepts, the fabrication of photonic building blocks and the experiments carried out as the initial steps toward the realization of the first high-capacity silicon photonic router.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.