Abstract
Abstract We study the strong convergence order of the Euler–Maruyama (EM) scheme for scalar stochastic differential equations with additive noise and irregular drift. We provide a general framework for the error analysis by reducing it to a weighted quadrature problem for irregular functions of Brownian motion. Assuming Sobolev–Slobodeckij-type regularity of order $\kappa \in (0,1)$ for the nonsmooth part of the drift, our analysis of the quadrature problem yields the convergence order $\min \{3/4,(1+\kappa )/2\}-\epsilon$ for the equidistant EM scheme (for arbitrarily small $\epsilon>0$). The cut-off of the convergence order at $3/4$ can be overcome by using a suitable nonequidistant discretization, which yields the strong convergence order of $(1+\kappa )/2-\epsilon$ for the corresponding EM scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.