Abstract
One of the most important themes in ramification theory is the formula for the Euler characteristic of l-adic sheaves. Although we have the Grothendieck-Ogg-Shafarevich formula [G] in one dimensional case, we don’t have a general formula in higher dimension even in the form of a conjecture. However for sheaves of rank 1, K.Kato formulated a conjecture in arbitrary dimension and actually proved it in dimension 2 in [K2]. In this paper, we will prove it in arbitrary dimension under a certain hypothesis, which is hoped to hold when the variety is sufficiently blowed up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.