Abstract

Abstract We study the strong convergence order of the Euler–Maruyama (EM) scheme for scalar stochastic differential equations with additive noise and irregular drift. We provide a general framework for the error analysis by reducing it to a weighted quadrature problem for irregular functions of Brownian motion. Assuming Sobolev–Slobodeckij-type regularity of order $\kappa \in (0,1)$ for the nonsmooth part of the drift, our analysis of the quadrature problem yields the convergence order $\min \{3/4,(1+\kappa )/2\}-\epsilon$ for the equidistant EM scheme (for arbitrarily small $\epsilon>0$). The cut-off of the convergence order at $3/4$ can be overcome by using a suitable nonequidistant discretization, which yields the strong convergence order of $(1+\kappa )/2-\epsilon$ for the corresponding EM scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call