Abstract

BackgroundThe tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups. Precision medicine approaches aim to overcome this challenge by combining pathophysiologically based treatments with stratification biomarkers that predict which treatment may be most beneficial for particular individuals. However, so far, we have no single validated stratification biomarker for ASD. This may be due to the fact that most research studies primarily have focused on the identification of mean case-control differences, rather than within-group variability, and included small samples that were underpowered for stratification approaches. The EU-AIMS Longitudinal European Autism Project (LEAP) is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD.MethodsLEAP includes 437 children and adults with ASD and 300 individuals with typical development or mild intellectual disability. Using an accelerated longitudinal design, each participant is comprehensively characterised in terms of clinical symptoms, comorbidities, functional outcomes, neurocognitive profile, brain structure and function, biochemical markers and genomics. In addition, 51 twin-pairs (of which 36 had one sibling with ASD) are included to identify genetic and environmental factors in phenotypic variability.ResultsHere, we describe the demographic characteristics of the cohort, planned analytic stratification approaches, criteria and steps to validate candidate stratification markers, pre-registration procedures to increase transparency, standardisation and data robustness across all analyses, and share some ‘lessons learnt’. A clinical characterisation of the cohort is given in the companion paper (Charman et al., accepted).ConclusionWe expect that LEAP will enable us to confirm, reject and refine current hypotheses of neurocognitive/neurobiological abnormalities, identify biologically and clinically meaningful ASD subgroups, and help us map phenotypic heterogeneity to different aetiologies.

Highlights

  • The tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups

  • We expect that Longitudinal European Autism Project (LEAP) will enable us to confirm, reject and refine current hypotheses of neurocognitive/ neurobiological abnormalities, identify biologically and clinically meaningful ASD subgroups, and help us map phenotypic heterogeneity to different aetiologies

  • We derive two complementary indices: First, using event-related potential (ERP) and event-related oscillation (ERO) paradigms, we study differences in ERP components and EROs that contribute to different sets of neurocognitive processes, such as face processing (P1, N170 components), preattentive change detection, or novelty detection (P3a)

Read more

Summary

Introduction

The tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups. Hundreds of common and rare risk genes have been identified [7] These diverse genetic as well as environmental risk factors may converge on a smaller number of common molecular pathways, including protein synthesis, synapse development and function, and neuro-immune interaction, which in turn impact brain circuit development and function [8]. It is not yet known how different aetiologies and phenotypic diversity at the cellular, molecular, brain systems, cognitive, and/or behavioural level(s) map onto one another

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.