Abstract

Objective: To investigate the effect of ethyl acetate extract from Celastrus orbiculatus (COE) on gastric cancer cell apoptosis and reveal its underlying molecular mechanism. In addition, it was aimed to stablish a theoretical basis for the clinical application of Celastrus orbiculatus in the gastric cancer treatment. Material and Methods: Western blot and RT-qPCR were used to detect mRNA and protein expression of PHB in gastric cancer and adjacent tissues. MTT method was used to detect the COE effect on the proliferation of AGS cells and to determine the 50% inhibitory concentration COE on these cells. COE effect on AGS apoptosis was evaluated by flow cytometry. Changes in apoptosis-related proteins expression in AGS cells were detected by western blot and changes in mitochondrial membrane potential were detected by JC-1 fluorescence staining. PHB expression was knocked down in AGS cells by lentiviral-mediated RNA interference. The COE antitumor effect was assessed in vivo using a subcutaneous transplantation tumor model in nude mice and in vivo fluorescence tracing technique in small animals. Results: The clinical samples analysis results showed that the PHB expression in gastric cancer samples was significantly higher than in corresponding adjacent tissues. MTT results showed that the AGS cell proliferation was significantly inhibited. RT-qPCR and western blot results showed that COE can significantly inhibit the PHB mRNA and protein expression, respectively. Flow cytometry analysis showed that COE was able to significantly promote AGS cell apoptosis. Western blot results also indicated that apoptosis-related protein expression changed significantly; BCL-2 expression significantly reduced while the Caspase-3 and Bax expression significantly increased after COE treatment. JC-1 fluorescence staining results showed that COE changed the mitochondrial membrane potential and activated the mitochondrial apoptosis pathway. Furthermore, in vivo experiments results demonstrated that the growth of subcutaneous transplanted tumor was significantly inhibited by the PHB knockdown and by the COE intragastric administration. Conclusion: COE can significantly promote apoptosis of human gastric cancer cells, which can be achieved by inhibiting PHB expression, thus altering the structure and function of mitochondria and activating the mitochondria apoptosis pathway. The antitumor effect of COE has also been proved in vivo.

Highlights

  • Gastric cancer is one of the most prevalent cancers in the world

  • Previous studies have shown that ethyl acetate extract of Celastrus orbiculatus (COE) can significantly inhibit epithelial mesenchymal transition (EMT), gastric cancer cell invasion and metastasis and the growth of a variety of cancer cells(Zhang et al, 2012; Zhu et al, 2014; Zhu et al, 2018)

  • Changes in the permeability of cell mitochondrial membranes can directly induce the release of the apoptosisinitiating factor cytochrome C, which leads to the occurrence of cell apoptosis

Read more

Summary

Introduction

Gastric cancer is one of the most prevalent cancers in the world. The incidence rate of gastric cancer is the first among all types of malignant tumors in China. Our previous studies have shown that the total terpenes of Celastrus orbiculatus can inhibit the growth and induce apoptosis of a variety of malignant tumor cells, such as liver, gastric, colorectal and cervical cancer. The total terpenes of Celastrus orbiculatus can inhibit the EMT induced by TGF-β1 in SGC-7901 cells, and significantly inhibit the expression levels of Cofilin 1, Heat shock protein 27 (Hsp27), Prohibitin (PHB) and Annexin A5 (Zhu et al, 2014). These data show the broad prospects for the application of Celastrus orbiculatus total terpenes as an antitumor agent Based on these previous studies, the present work analyzed the effect of COE on the cell viability and apoptosis of the human gastric cancer cell line AGS. The signaling pathways that may be involved in the COE antitumor effect have been identified in order to lay the foundation for new antitumor drugs development

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call