Abstract

In this paper, we simplify and extend the Eta pairing, originally discovered in the setting of supersingular curves by Barreto , to ordinary curves. Furthermore, we show that by swapping the arguments of the Eta pairing, one obtains a very efficient algorithm resulting in a speed-up of a factor of around six over the usual Tate pairing, in the case of curves that have large security parameters, complex multiplication by an order of Qopf (radic-3), and when the trace of Frobenius is chosen to be suitably small. Other, more minor savings are obtained for more general curves

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.