Abstract

IntroductionEstrogens play a pivotal role in the initiation and progression of breast cancer. The genes that mediate these processes are not fully defined, but potentially include the known mammary oncogene MYC. Characterization of estrogen-target genes may help to elucidate further the mechanisms of estrogen-induced mitogenesis and endocrine resistance.MethodsWe used a transcript profiling approach to identify targets of estrogen and c-Myc in breast cancer cells. One previously uncharacterized gene, namely HBV pre-S2 trans-regulated protein 3 (HSPC111), was acutely upregulated after estrogen treatment or inducible expression of c-Myc, and was selected for further functional analysis using over-expression and knock-down strategies. HSPC111 expression was also analyzed in relation to MYC expression and outcome in primary breast carcinomas and published gene expression datasets.ResultsPretreatment of cells with c-Myc small interfering RNA abrogated estrogen induction of HSPC111, identifying HSPC111 as a potential c-Myc target gene. This was confirmed by the demonstration of two functional E-box motifs upstream of the transcription start site. HSPC111 mRNA and protein were over-expressed in breast cancer cell lines and primary breast carcinomas, and this was positively correlated with MYC mRNA levels. HSPC111 is present in a large, RNA-dependent nucleolar complex, suggesting a possible role in ribosomal biosynthesis. Neither over-expression or small interfering RNA knock-down of HSPC111 affected cell proliferation rates or sensitivity to estrogen/antiestrogen treatment. However, high expression of HSPC111 mRNA was associated with adverse patient outcome in published gene expression datasets.ConclusionThese data identify HSPC111 as an estrogen and c-Myc target gene that is over-expressed in breast cancer and is associated with an adverse patient outcome.

Highlights

  • Estrogens play a pivotal role in the initiation and progression of breast cancer

  • HSPC111 mRNA and protein were over-expressed in breast cancer cell lines and primary breast carcinomas, and this was positively correlated with MYC mRNA levels

  • High expression of HSPC111 mRNA was associated with adverse patient outcome in published gene expression datasets

Read more

Summary

Introduction

Estrogens play a pivotal role in the initiation and progression of breast cancer. It has been proposed that the causative link between estrogen and breast cancer is due to its potent mitogenic and antiapoptotic effects [2]. It is not fully understood how these effects are mediated at the molecular level. Such insight may provide clues to the mechanisms of estrogen-induced mitogenesis and cell survival, or resistance to endocrine therapies, or identify potential novel therapeutic targets for breast cancer, in the settings of endocrine insensitivity and resistance. The identification and characterization of estrogen target genes is a major research priority

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.