Abstract

Optical coherence tomography (OCT) is recommended to be the most appropriate modality in assessing calcium thickness, however, it has limitations associated with infrared attenuation. Although coronary computed tomography angiography (CCTA) detects calcification, it has low resolution and hence not recommended to measure the calcium size. The aim of this study was to devise a simple algorithm to estimate calcium thickness based on the CCTA image. A total of 68 patients who had CCTA for suspected coronary artery disease and subsequently went on to have OCT were included in the study. 238 lesions of them divided into derivation and validation dataset at 2:1 ratio (47 patients with 159 lesions and 21 with 79, respectively) were analyzed. A new method was developed to estimate calcium thickness from the maximum CT density within the calcification and compared with calcium thickness measured by OCT. Maximum Calcium density and measured calcium-border CT density had a good correlation with a linear equation of y = 0.58x + 201 (r = 0.892, 95% CI 0.855-0.919, p < 0.001). The estimated calcium thickness derived from this equation showed strong agreement with measured calcium thickness in validation and derivation dataset (r2 = 0.481 and 0.527, 95% CI 0.609-0.842 and 0.497-0.782, p < 0.001 in both, respectively), more accurate than the estimation by full width at half maximum and inflection point method. In conclusion, this novel method provided the estimation of calcium thickness more accurately than conventional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.