Abstract
A class of univariate fractional ARIMA models with a continuous time parameter is developed for the purpose of modeling long-memory time series. The spectral density of discretely observed data is derived for both point observations (stock variables) and integral observations (flow variables). A frequency domain maximum likelihood method is proposed for estimating the longmemory parameter and is shown to be consistent and asymptotically normally distributed, and some issues associated with the computation of the spectral density are explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.