Abstract

Tangier disease (TD) is a human genetic disorder associated with defective apolipoprotein-I-induced lipid efflux and increased atherosclerotic susceptibility. It has been linked to mutations in the ATP-binding cassette protein A1 (ABCA1). Here we describe the establishment of permanent Tangier cell lines using telomerase. Ectopic expression of the catalytic subunit of human telomerase extended the life span of control and TD skin fibroblasts, and (in contrast to immortalization procedures using viral oncogenes) did not impair apolipoprotein A-I-induced lipid efflux. The key characteristics of TD fibroblasts (reduced cholesterol and phospholipid efflux) were observed both in primary and telomerase-immortalized fibroblasts from two unrelated homozygous patients. Surprisingly, the apolipoprotein-inducible cholesterol efflux in TD cells was significantly improved after immortalization (up to 40% of normal values). In contrast to ABCA1-dependent cholesterol efflux, this efflux was not inhibited by brefeldin A, glybenclamide, or intracellular ATP depletion but was inhibited in the presence of cytochalasin D. Apolipoprotein A-I-dependent cholesterol efflux was inversely correlated with the population doubling number in cell culture and was inhibited up to 40% in near-senescent normal diploid fibroblasts. This inhibition was completely reversed by telomerase. Thus ectopic expression of telomerase is a way to circumvent the lack of critical experimental material and represents a major improvement for studying cholesterol efflux pathways in lipid disorders. Our findings indicate the existence of an ABCA1-independent but cytoskeleton-dependent cholesterol removal pathway that may help to prevent early atherosclerosis in Tangier disease but may also be sensitive to aging phenomena ex vivo and possibly in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.