Abstract

Neurons removed from the embryonic hippocampus and placed into culture develop structurally and functionally distinct axonal and dendritic processes. The central issue addressed in this study concerns the extent to which the sequence of events which results in the differentiation of neurites by hippocampal neurons in culture is influenced by the cell's state of development in situ. [ 3H]thymidine was administered to pregnant rats either on Embryonic Day 15 (E15) or on E18.5 to label hippocampal neurons at known stages of their development. All fetuses were sacrificed on E19. Some of the fetal brains were sectioned and examined by autoradiography to determine the location of labeled cells in the hippocampus. The remaining brains were used to prepare hippocampal cell cultures. Neurons labeled at E18.5 remained confined to the ventricular zone at E19. Those labeled at E15 had completed their migration to the cortical plate. Other data suggest that the former cells had not yet initiated process outgrowth, while the latter cells had begun to elaborate both axons and dendrites. When introduced into culture, both populations of cells developed axons and dendrites and both compartmentalized MAP2 to the dendritic domain. Moreover, despite marked differences in their developmental state at the time of introduction into culture, both underwent the same sequence of developmental events leading to axonal and dendritic development. In a few cases cells that incorporated [ 3H]thymidine in situ at E18.5 apparently underwent mitosis in culture. These neurons also developed axons and dendrites appropriately. These results indicate that hippocampal neurons become polarized in culture, even if they have never developed axons or dendrites in situ, and do so as efficiently as cells that have become polarized before being placed into culture. Moreover, they indicate that the same sequence of events leading to the establishment of polarity occurs for hippocampal neurons with different developmental histories prior to culturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.