Abstract
The maize leaf consists of four distinct tissues along its proximodistal axis: sheath, ligule, auricle and blade. liguleless1 (lg1) functions cell autonomously to specify ligule and auricle, and may propagate a signal that correctly positions the blade-sheath boundary. The dominant Wavy auricle in blade (Wab1) mutation disrupts both the mediolateral and proximodistal axes of the maize leaf. Wab1 leaf blades are narrow and ectopic auricle and sheath extend into the blade. The recessive lg1-R mutation exacerbates the Wab1 phenotype; in the double mutants, most of the proximal blade is deleted and sheath tissue extends along the residual blade. We show that lg1 is misexpressed in Wab1 leaves. Our results suggest that the Wab1 defect is partially compensated for by lg1 expression. A mosaic analysis of Wab1 was conducted in Lg1+ and lg1-R backgrounds to determine if Wab1 affects leaf development in a cell-autonomous manner. Normal tissue identity was restored in all wab1+/- sectors in a lg1-R mutant background, and in three quarters of sectors in a Lg1+ background. These results suggest that lg1 can influence the autonomy of Wab1. In both genotypes, leaf-halves with wab1+/- sectors were significantly wider than non-sectored leaf-halves, suggesting that Wab1 acts cell-autonomously to affect lateral growth. The mosaic analysis, lg1 expression data and comparison of mutant leaf shapes reveal previously unreported functions of lg1 in both normal leaf development and in the dominant Wab1 mutant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.