Abstract

The daily work in data science involves a set of essential tools: the programming languages Python and R, the version control tool Git and the virtualization tool Docker. Proficiency in at least one programming language is required for data science. R is tied to a computing environment that focuses on statistics, in which many new algorithms in genomics and biomedicine are first published. Python has a root in system administration, and is a superb language for general programming. Version control is critical to managing complex projects, even if software development is not involved. Docker container is becoming a key tool for deployment, portability, and reproducibility. This chapter provides a self-contained practical guide of these topics so that readers can use it as a reference and to plan their training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.