Abstract
In 1983, Klaus studied a class of potentials with bumps and computed the essential spectrum of the associated Schr{\"o}dinger operator with the help of some localisations at infinity. A key hypothesis is that the distance between two consecutive bumps tends to infinity at infinity. In this article, we introduce a new class of graphs (with patterns) that mimics this situation, in the sense that the distance between two patterns tends to infinity at infinity. These patterns tend, in some way, to asymptotic graphs. They are the localisations at infinity. Our result is that the essential spectrum of the Laplacian acting on our graph is given by the union of the spectra of the Laplacian acting on the asymptotic graphs. We also discuss the question of the stability of the essential spectrum in the appendix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.