Abstract
PROLIFERA (PRL) encodes a homologue of the DNA replication licensing factor Mcm7, a highly conserved protein found in all eukaryotes. Insertions in the PROLIFERA gene are lethal, resulting in decreased transmission through the female gametophyte, and homozygous embryonic lethality. We show here that PROLIFERA is specifically expressed in populations of dividing cells in sporophytic tissues of the plant body, such as the palisade layer of the leaf and founder cells of initiating flower primordia. Gene fusions with the green fluorescent protein (GFP) reveal that the PROLIFERA protein accumulates during the G(1) phase of the cell cycle, and is transiently localized to the nucleus. During mitosis, the fusion protein rapidly disappears, returning to daughter nuclei during G(1). PROLIFERA::GUS fusions are strongly expressed in the central cell nucleus of mature megagametophytes, which have a variety of arrest points reflecting a leaky lethality. Expression is also observed in the endosperm of mutant prl embryo sacs that arrest following fertilization. Crosses with wild-type pollen result in occasional embryonic lethals that also stain for GUS activity. In contrast, embryos resulting from crosses of wild-type carpels with PRL::GUS pollen do not stain and are phenotypically normal. In situ hybridization of GUS fusion RNA indicates transcription is equivalent from maternally and paternally derived alleles, so that accumulation of maternally derived gametophytic protein is likely to be responsible for the 'maternal' effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.