Abstract

In this paper, we discuss the essential element of gravity as spacetime curvature and a gravitational wave as the propagation of spacetime curvature. Electromagnetic waves are necessarily localized carriers of spacetime curvature and hence are also gravitational waves. Thus, electromagnetic waves have dual character and detection of gravitational waves is the routine of our everyday experience. Regarding the transferring energy from a gravitational wave to an apparatus, both Rosen and Bondi waves lack the essential characteristic of inducing a gradient of acceleration between detector elements. We discuss our simple invariant energy expression for general relativity and its extension. If the cosmological term is present in the field equations, its universal presence characteristic implies that gravitational waves would necessarily have an energy aspect in their propagation in every case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.