Abstract

In this part of the work, the Eshelby tensors of a finite spherical domain are applied to various homogenization procedures estimating the effective material properties of multiphase composites. The Eshelby tensors of a finite domain can capture the boundary effect of a representative volume element as well as the size effect of the different phases. Therefore their application to homogenization does not only improve the accuracy of classical homogenization methods, but also leads to some novel homogenization theories. This paper highlights a few of them: a refined dilute suspension method and a modified Mori–Tanaka method, the exterior eigenstrain method, the dual-eigenstrain method, which is a generalized self-consistency method, a shell model, and new variational bounds depending on the different boundary conditions. To the best of the authors’ knowledge, this is the first time that a multishell model is used to evaluate the Hashin–Shtrikman bounds for a multiple phase composite (n⩾3), which can distinguish some of the subtleties of different microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.