Abstract

Usp8 is a deubiquitinating enzyme that works as regulator of endosomal trafficking and is involved in cell proliferation. "In vivo" USP8 is predominantly expressed in the central nervous system and testis, two organs with highly polarized cells. Considering that neuronal cell functionality is strictly dependent on vesicular traffic and ubiquitin-mediated sorting of the endocytosed cargo, it could be of relevance to investigate about USP8 in neuronal cells, in particular motor neurons. In this study, we found that USP8 is expressed in the gray and white matter of the spinal cord, labeling neuronal cell bodies, axonal microtubules and synaptic terminals. The glia component is essentially USP8-immunonegative. The partial colocalization of USP8 with EEA1 in motor neurons indicates that USP8 is involved in early endosomal trafficking while that with Vps54 suggests an involvement in the retrograde traffic. The variant Vps54(L967Q) is responsible for the wobbler phenotype, a disorder characterized by motor neuron degeneration. We searched for USP8/Vps54 in wobbler spinal cord. The most worth-mention result was that wobbler oligodendrocytes, in contrast to the wild-type, are heavily USP8-immunoreactive; no significant modification was appreciated about the cellular expression of mutated Vps54. On the other hand, as to the neuronal intracellular localization, both USP8 and Vps54(L967Q) did not show the typical spot-like distribution, but seemed to accumulate in proteinaceous aggregates. Collectively, our study suggests that in neuronal cells USP8 could be involved in endosomal trafficking, retrograde transport and synaptic plasticity. In disorders leading to neurodegeneration USP8 is upregulated and could influence the neuron-oligodendrocyte interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.