Abstract

Mitochondria play important roles in energy generation and homeostasis maintenance in eukaryotic cells. The damaged or superfluous mitochondria can be nonselectively or selectively removed through the autophagy/lysosome pathway, which was referred as mitophagy. According to the molecular machinery for degrading mitochondria, the selectively removed mitochondria can occur through macromitophagy or micromitophagy. In this study, we show that the endosomal sorting complex required for transport III (ESCRT-III) in budding yeast regulates macromitophagy induced by nitrogen starvation, but not by the post-logarithmic phase growth in lactate medium by monitoring a mitochondrial marker, Om45. Firstly, loss of ESCRT-III subunit Snf7 or Vps4-Vta1 complex subunit Vps4, two representative subunits of the ESCRT complex, suppresses the delivery and degradation of Om45-GFP to vacuoles. Secondly, we show that the mitochondrial marker Om45 and mitophagy receptor Atg32 accumulate on autophagosomes marked with Atg8 (mitophagosomes, MPs) in ESCRT mutants. Moreover, the protease-protection assay indicates that Snf7 and Vps4 are involved in MP closure. Finally, Snf7 interacts with Atg11, which was detected by two ways, glutathione-S-transferase (GST) pulldown and bimolecular fluorescence complementation (BiFC) assay, and this BiFC interaction happens on mitochondrial reticulum. Therefore, we proposed that the ESCRT-III machinery mediates nitrogen starvation-induced macromitophagy by the interaction between Snf7 and Atg11 so that Snf7 is recruited to Atg32-marked MPs by the known Atg11-Atg32 interaction to seal them. These results reveal that the ESCRT-III complex plays a new role in yeast on macromitophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call