Abstract
The Saccharomyces cerevisiae rad52 mutants are sensitive to many DNA damaging agents, mainly to those that induce DNA double-strand breaks (DSBs). In the yeast, DSBs are repaired primarily by homologous recombination (HR). Since almost all HR events are significantly reduced in the rad52 mutant cells, the Rad52 protein is believed to be a key component of HR in S. cerevisiae. Similarly to the S. cerevisiae Rad52 protein, RecA is the main HR protein in Escherichia coli. To address the question of whether the E. coli RecA protein can rescue HR defective phenotype of the rad52 mutants of S. cerevisiae, the recA gene was introduced into the wild-type and rad52 mutant cells. Cell survival and DSBs induction and repair were studied in the RecA-expressing wild-type and rad52 mutant cells after exposure to ionizing radiation (IR) and methyl methanesulphonate (MMS). Here, we show that expression of the E. coli RecA protein partially complemented sensitivity and fully complemented DSB repair defect of the rad52 mutant cells after exposure to IR and MMS. We suggest that in the absence of Rad52, when all endogenous HR mechanisms are knocked out in S. cerevisiae, the heterologous E. coli RecA protein itself presumably takes over the broken DNA.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.