Abstract

This paper presents development of a quartz crystal microbalance (QCM) biosensor for real-time detection of E. coli O157:H7 DNA based on nanogold particles amplification. Many inner Au nanoparticles were immobilized onto the thioled surface of the Au electrode, then more specific thiolated single-stranded DNA (ssDNA) probes could be fixed through Au-SH bonding. The hybridization was induced by exposing the ssDNA probe to the complementary target DNA of E. coli O157:H7 gene eaeA, then resulted in a mass change and corresponding frequency shifts (Δf) of the QCM. The outer avidin-coated Au nanoparticles could combine with the target DNA to increase the mass. The electrochemical techniques, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to manifest and character each step. The target DNA corresponding to 2.0×103 colony forming unit (CFU)/mL E. coli O157:H7 cells can be detected by this biosensor, so it is practical to develop a sensitive and effective QCM biosensor for pathogenic bacteria detection based on specific DNA analysis. The piezoelectric biosensing system has potential for further applications, such as food safety and environment monitoring, and this approach lays the groundwork for incorporating the method into an integrated system for in-field bacteria detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.